Senin, 04 Agustus 2014

The Parent Cells Of Glioblastoma

By Annabelle Holman


Primary brain tumors, those that originate in the brain, are more frequent in children and older adults. One feature that sets brain tumors apart from those arising from other tissues in the body is their inability to exit the brain to form secondary, or metastatic, tumors in other organs. They do, however, have a tendency to invade the surrounding brain to establish new tumors within the cranium. The most serious type of intrinsic brain tumor is called glioblastoma multiforme, or GBM.

Intracranial tumors are the most common cause of death by cancer in people under twenty years old. Second only to leukemia, they are the most common cause of cancer death in men aged 20-29. Neural tumors are the 5th leading cause of cancer fatalities in women aged 20-39.

The incidence of GBM is very low, between two and three new cases per 100,000. Because of their ability to migrate away from the parent tumor and start new growths, complete surgical excision is impossible. Try scraping off all of the butter from your next slice of toast.

GBM starts in glial cells within the brain, the so-called "helper" cells. While nerve cells stop dividing once they achieve terminal differentiation, glial cells retain the ability to divide throughout the life of the parent organism, i. E., you and me. In vivo studies in the 1960s and in vitro research from the early 2000s seems to indicate that most, if not all, intrinsic brain tumors originate in the developing fetus.

The human brain is home to three types of glial cells: oligodendrocytes, astrocytes and microglial cells. The most numerous of these are the astrocytes, star-shaped cells. These cells give rise to tumors called astrocytomas, the most malignant of which are the GBM. The median survival time in GBM is less than five months if left untreated.

Astrocytes, situated in the brain and spinal cord, have several important functions. Among these is providing support to the vascular cells that make up the blood brain barrier, providing nutrients to neuronal tissue and repairing damage caused by CNS trauma. Recent experiments indicate that one way that astrocytes communicate with nerve cells is by releasing glutamate, an excitatory neurotransmitter.

Oligodendrocytes have fewer spiny processes than astrocytes. Their main function is to produce the myelin sheath that surrounds nerve cell axons to insulate them and speed up nerve impulse transmission. A single oligodendrocyte can service as many as 50 different nerve cells. It is the myelin sheath that is attacked by the immune system in the autoimmune condition known as multiple sclerosis (MS).

Microglia are a special type of immune system cell resident within the central nervous system. These cells respond quickly to invasion from foreign bodies, embrace them through a process called phagocytosis and present them for destruction by T-cells. Resting microglia look very cute under the microscope, with tiny spines called processes. Activated microglia share more morphological characteristics with cells of the immune system, or leukocytes.




About the Author:



Tidak ada komentar:

Posting Komentar